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Abstract

This pearl presents a novel technique for constructing a first-
order syntax tree directly from a higher-order interface. We
exploit circular programming to generate names for new
variables, resulting in a simple yet efficient method. Our
motivating application is the design of embedded languages
supporting variable binding, where it is convenient to use
higher-order syntax when constructing programs, but first-
order syntax when processing or transforming programs.

Categories and Subject Descriptors D.3.1 [Formal Defi-
nitions and Theory]: Syntax; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords higher-order syntax; embedded languages; cir-
cular programming

1. Introduction

Imagine a simple Haskell data type for expressions of the
lambda calculus:

data Exp = Var Name -- Variable
| Lam Name Exp -- Abstraction
| App Exp Exp -- Application
deriving (Show)

The Var and Lam constructors use explicit names to refer
to variables, where names belong to the abstract type Name.
When constructing expressions in this representation, we
have to keep track of the scope of bound variables. As an
example, the term λx.(λy.y)(λz.z)x – a verbose definition
of the identity function – can be represented as follows
(assuming an integer representation of names):
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app :: Exp → Exp → Exp
lam :: (Exp → Exp) → Exp

Figure 1: Higher-order interface for the lambda calculus

identityFO :: Exp
identityFO = Lam 1
(App (App (Lam 2 (Var 2)) (Lam 3 (Var 3)))

(Var 1)
)

Because it is so easy to mix up variable names, it is common
to instead use higher-order syntax (HOS) in embedded lan-
guages. A HOS interface for the lambda calculus is given in
Fig. 1. HOS allows us to write the above example in a much
more convenient form:

identity :: Exp
identity = lam (λx →

app (app (lam (λy → y)) (lam (λz → z)))
x

)

By using binding in the host language to represent binding
in the object language, it is impossible to refer to unbound
variables. Note that the HOS interface does not include a
constructor for variables. Those are implicitly introduced by
lam.

How can we implement the interface in Fig. 1 without chang-
ing the original Exp data type? That is the question that this
pearl will answer. As we shall see in Sec. 4, this problem
is highly relevant to the implementation of embedded lan-
guages.

First attempt. The difficulty is in implementing lam. A first
attempt may lead to the following code:

lam f = Lam n (f (Var n))
where
n = ???

Now, the problem is to choose a name n that does not inter-
fere with other names in the expression. The name must be



bot :: Name
prime :: Name → Name

-- prime law:
∀ a . prime a > a

-- Maximum:
(t ) :: Name → Name → Name
m t n | m ≥ n = m

| n > m = n

Figure 2: Creation and manipulation of names

chosen so that (1) the binding does not accidentally capture
free variables in the body, and (2) uses of the new variable
are not captured by other bindings in the body.

Abstract representation of names. In order to allow free-
dom in the representation of names, we will use the opera-
tions in Fig. 2 to create, manipulate and reason about names.
A name can be any totally ordered type implementing the
given interface. The law for prime states that this function
always increases the order of a name. Since no operation de-
creases the order of a name, we can argue that bot is the
smallest name, as long as we only create names using the
given interface.

For the examples in this pearl, we will use the following
implementation of names:

type Name = Integer
bot = 0
prime = succ

Note also that (t) is equivalent to the max function.

2. Alternatives

This section gives two alternative implementations of the
HOS interface. These provide sufficient background to de-
velop our new method in Sec. 3. Some additional alternatives
are mentioned in the related work (Sec. 4).

2.1 Threading a name supply

As a reference, let us first consider a non-solution – one that
does involve changing the Exp type. The idea is to prevent
capturing by using a unique name in each binding. This can
be done by threading a name supply through the lam and app

functions, which requires us to change Exp to a state-passing
function:1

type ExpNS = Name → (Exp, Name)

1 We will use subscripts as a way to distinguish different implementations
of similar functions and types throughout the paper.

fromExpNS :: ExpNS → Exp
fromExpNS e = fst (e (prime bot))

The implementation of application will just thread the state,
first through the function and then through the argument.
Abstraction is a bit more involved.

appNS :: ExpNS → ExpNS → ExpNS
appNS f a = λn →

let (f’,o) = f n
(a’,p) = a o

in (App f’ a’, p)

lamNS :: (ExpNS → ExpNS ) → ExpNS
lamNS f = λn →

let var = λo → (Var n, o)
(a,p) = f var (prime n)

in (Lam n a, p)

The incoming name n is used for the new variable. The vari-
able expression var just passes its name supply through un-
changed. The body (f var) is given (prime n) as the incom-
ing name, which ensures that all its bindings will use names
that are different from n.

An example shows how the names are chosen:

*Main> fromExpNS identityNS
Lam 1 (App (App (Lam 2 (Var 2)) (Lam 3 (Var 3)))
(Var 1))

The expression identityNS is defined as identity but with NS

subscripts on app and lam. We will use the same convention
for identitySPEC below.

The name supply method does not solve the original prob-
lem, as it uses a different representation of expressions. Also,
the tedious state threading in appNS and lamNS leaves a bad
taste in the mouth. On the more practical side, the fact that
ExpNS is a function leads to some additional problems:

• It is not directly possible to pattern match on expressions.
Pattern matching is commonly used to define smart con-
structors that simplify expressions on the fly [6].

• It is not possible to observe any implicit sharing [5, 7]
in the expression. After all, a shared sub-expression can
appear in many contexts with different name supplies.

For all these reasons, we leave ExpNS behind and look for a
better alternative.

2.2 Speculative naming

Recall, the problem is to implement lam without changing
the Exp type, which means that there will not be any name
supply available. Let us thus return to our original attempt at
defining lam:

lam f = Lam n (f (Var n)) where n = ???



We have no name supply, yet we need to pick a name that
does not interfere with the body of the expression. One way
to solve this puzzle is to speculatively evaluate the function
f to find out which names are used in the body, then pick a
different name for the variable, and apply f again:

lamSPEC :: (Exp → Exp) → Exp
lamSPEC f = Lam n’ (f (Var n’))
where
ph = Var bot -- Placeholder
n = maxV (f ph) -- Speculation
n’ = prime n

The placeholder ph used in the first application of f uses
the smallest name bot, which is assumed only to be used
for speculative evaluation, not for bound variables. The maxV

function simply traverses the body to find the greatest occur-
ring variable name:

maxV :: Exp → Name
maxV (Var n) = n
maxV (App f a) = maxV f t maxV a
maxV (Lam _ a) = maxV a

Selecting n’ = prime n ensures absence of capturing: there
could be other variables of that name in scope, but they are
anyway not used in the body.

Since we are now constructing the Exp type directly, the
appSPEC constructor is identical to App:

appSPEC = App

Our running example shows how the names are chosen:

*Main> identitySPEC
Lam 2 (App (App (Lam 1 (Var 1)) (Lam 1 (Var 1)))
(Var 2))

So, the method works, but can you spot the problems with
the implementation of lamSPEC?

One problem is that maxV has to traverse the whole body,
leading to quadratic complexity in expressions with nested
lambdas. However, there is a much more severe problem:
The function f is applied twice in each lambda, which means
that an expression with n nested lambdas requires 2n appli-
cations!

Deeply nested lambdas are not uncommon in embedded
languages where variable binding is used to represent shared
sub-expressions (as, for example, in reference [6]). Thus, the
exponential complexity renders the above method unusable
in practice.

3. Our method: circular speculation

The speculative application in the previous method is used
to resolve the circular dependency arising from the fact that

we need to examine the body before constructing it. In a
classic paper, Richard Bird poses the Repmin problem that
has a similar circular dependency [2]. The Repmin problem
is to define a function that converts a tree into a tree of
identical shape, but where all leaves have been replaced by
the minimal leaf in the original tree. A naive solution would
traverse the tree twice – once to find the minimal leaf, and
once to construct the new tree. Bird’s solution uses circular
programming to collapse the two traversals into one.

For the Repmin problem, circular programming reduces two
traversals into one more complicated traversal, which makes
it unclear if the approach saves any computation at all. How-
ever, in case of nested traversals, cutting the number of re-
cursive calls in each step can reduce the complexity class!

Can we use circular programming to avoid the exponential
blowup in lamSPEC? Let us try:

lamCIRC :: (Exp → Exp) → Exp
lamCIRC f = Lam n’ body
where
body = f (Var n’)
n = maxV body
n’ = prime n

This version avoids the separate speculation by using the
correct name right away. Although this function type checks,
unfortunately it does not work.

Why?

The problem is that maxV can no longer distinguish the new
variable from other variables in the body. Thus, maxV re-
turns a name that is at least as high as n’, giving n ≥ n’.
At the same time, we have n’ = prime n which gives us
n’ > n. This contradiction manifests itself as an infinite loop
in lamCIRC.

3.1 A different perspective

The simple speculative method involved finding a name that
is not used in the body of a binding. As previously said, this
ensures absence of capturing. However, another way to avoid
capturing is to only look at the variables that are bound in the
body, and pick a name that is not bound. Then there is still a
risk of capturing a free variable, but as long as all bindings
and variables are created using the same method, this will
never happen (see Sec. 3.2).

The function that finds the greatest bound variable is a slight
variation of maxV:

maxBV :: Exp → Name
maxBV (Var _) = bot
maxBV (App f a) = maxBV f t maxBV a
maxBV (Lam n a) = n t maxBV a



app :: Exp → Exp → Exp
app = App

lam :: (Exp → Exp) → Exp
lam f = Lam n body
where
body = f (Var n)
n = prime (maxBV body)

Figure 3: Implementation of the higher order interface using
circular programming

Fig. 3 gives a complete definition of the HOS interface using
circular programming. The trick is that since maxBV does not
look at Var constructors, it can produce a value without
forcing evaluation of the new variable. Thus, the infinite loop
is broken.

For the identity example (but not in general), our method
chooses the same names as the simple speculative method:

*Main> identity
Lam 2 (App (App (Lam 1 (Var 1)) (Lam 1 (Var 1)))
(Var 2))

3.2 The law of the jungle: to capture or to be captured

When choosing a name for a new binding, there are two
problems we want to avoid: (1) the binding captures a free
variable in the body, and (2) uses of the new variable are
captured by other bindings in the body. For closed terms,
capturing can only happen when a binder shadows a vari-
able in scope. Thus, to check for absence of capturing, it is
enough to check for absence of shadowing:

safe :: Exp → Bool
safe (Var _) = True
safe (App f a) = safe f && safe a
safe (Lam n a) = n > maxBV a && safe a

The above function checks that no binding is shadowed by
another binding in its body. The requirement that each bind-
ing introduces a variable that is greater than all bound vari-
ables in the body is overly conservative (it is enough that
the new variable is distinct from the bound variables in the
body), but suffices for our purposes. Note that by assuming
closed terms and only considering shadowing, we can reason
about capture-avoidance purely in terms of binders, ignoring
any uses of the variables. We trust that our HOS implemen-
tation only produces closed expressions.

We will argue for the correctness of our method by show-
ing that any term constructed using the HOS interface – app

and lam – is safe. To simplify reasoning, we only consider
Haskell terms t built using direct application of those func-
tions and variables.

Definition 1. A HOS term is defined by the following gram-
mar:

t ::= v

| app t t

| lam (λv . t)

Definition 2. We use c ` t ⇓ e to denote evaluation of the
term t to value e (of type Exp) in context c. A context is a
mapping from Haskell variables to expressions of type Exp.
We omit the definition of evaluation from the paper.

Definition 3. We extend the notion of safety to contexts:
safeCXT c holds if all variables in c map to safe expressions.

Theorem 1. Evaluation of a term t in a safe context c results
in a safe expression:

∀ c t e . safeCXT c & c ` t ⇓ e ⇒ safe e

The proof is by induction on terms. The base case, for vari-
ables, is proved by noting that looking up a variable in a safe
context must result in a safe expression. The case for app is
shown by a straightforward use of the induction hypothesis.
For lam, we see in Fig. 3 that it evaluates to Lam n body. This
expression is safe if n is greater than all bound variables in
the body and the body is safe. The first requirement is triv-
ially fulfilled by the definition of lam. To show that body is
safe, we expand it to f (Var n), where f is equal to λv . t for
some variable v and term t. Thus, the evaluation of the body
in context c must be equal to the evaluation of t in context
(v 7→ Var n : c). Assuming that c is safe, this extended con-
text is also safe; hence the induction hypothesis implies that
the result of evaluating the body is safe.

3.3 Achieving linear complexity

So far, we have prevented the exponential complexity in
the simple speculative solution by only computing the body
once in lam. However, since lam has to traverse the whole
body to find the greatest bound variable, we still have
quadratic complexity in the number of nested lambdas. For-
tunately, the reasoning in Sec. 3.2 shows us that lam actually
traverses most of the body in vain!

The safe property states that each binding introduces a vari-
able that is greater than all bound variables in the body. This
means that we can make an improved version of maxBV that
only looks at the closest binders:

maxBV+ :: Exp → Name
maxBV+ (Var _) = bot
maxBV+ (App f a) = maxBV+ f t maxBV+ a
maxBV+ (Lam n _) = n



Lemma 1. For safe expressions, maxBV+ gives the same re-
sult as maxBV:

safe e ⇒ maxBV+ e = maxBV e

Proof by induction on expressions.

Swapping in maxBV+ in the definition of lam gives us a more
efficient implementation:

lam+ f = Lam n body
where
body = f (Var n)
n = prime (maxBV+ body)

Here, maxBV+ traverses the body down to the closest binders,
which in the worst case means traversing most of the expres-
sion. However, since the result is a Lam expression, the body
will never have to be traversed again by uses of maxBV+ from
lambdas higher up in the expression. Thus, the total effect
of all uses of maxBV+ is one extra traversal of the expression.
This means that the complexity of building an expression
is linear in the size of the expression, giving an amortized
complexity of O(1) for each lam and app.

Theorem 2. Let t+ range over terms built using app and
lam+. Evaluation of a term t+ in a safe context c results in a
safe expression:

∀ c t+ e . safeCXT c & c ` t+ ⇓ e ⇒ safe e

Proof using induction on terms t+ and lemma 1.

4. Discussion and related work

The problem solved in this pearl is not just a theoretical ex-
ercise – it is of great interest to the implementation of em-
bedded domain-specific languages (EDSLs). There are many
EDSLs that rely on a higher-order interface towards the user
and a first-order representation for analysis and code gener-
ation: Lava [3], Pan [6], Nikola [8], Accelerate [10], Obsid-
ian [12] and Feldspar [1], to name some. All of these EDSLs
employ some kind of higher-order to first-order conversion.

The simple speculative method in Sec. 2.2 was originally
suggested by Lennart Augustsson in a private communica-
tion with the authors. One of the anonymous referees also
brought to our attention that a similar method is used in ref-
erence [4] to construct a first-order term with de Bruijn in-
dexes from a higher-order interface.

A common method for implementing higher-order lan-
guage constructs is to use higher-order abstract syntax
(HOAS) [11]. A HOAS version of the lambda calculus
would be like our Exp but where the Lam constructor mim-
ics the type of lam:

data Exp
= Var Name
| App Exp Exp
| Lam (Exp → Exp)

The advantage of this representation is that the constructors
have a direct correspondence to the HOS interface in Fig. 1.
However, working with this type is not convenient. As soon
as we need to look inside a lambda, we need to come up
with a variable name to pass to the binding function, which
means that the name generation problem we have battled
in this paper will reappear in each analysis. Another prob-
lem is HOAS to HOAS transformations where the binding
functions have to be reconstructed after transforming under
a lambda.

Instead, a common approach is to have a separate data type
for first-order abstract syntax (FOAS) and a function to con-
vert from HOAS to FOAS. This technique is used, for exam-
ple, in Accelerate and recent versions of Feldspar. Although
the technique is quite useful, it has some practical concerns:

• It requires defining two separate but almost identical data
types (or play tricks to merge the two into one).

• Care has to be taken not to destroy implicit sharing during
conversion [10].

In a blog post, McBride [9] proposes an implementation of
higher-order syntax that, like our solution, does not require
a separate HOAS data type. His term representation uses
typed de Bruijn indexes and a type class to compute the
index of a variable depending on its use site. Since de Bruijn
indexes depend on the nesting depth of binders, a value-level
implementation would require passing an environment while
building expressions (with problems similar to the ones in
Sec. 2.1). McBride cleverly avoids the problem by lifting the
environment to the type level. Unfortunately, this also leads
to more complicated types in the user interface.

It should be noted that our technique using circular spec-
ulation assumes that all bindings and variables are created
using the lam function. This restriction is fine in an embed-
ded language front end where terms are constructed from
scratch, but it makes the approach unsuitable for introduc-
ing new bindings in existing terms. Consider the following
transformation:

trans (Lam n a) = Lam n (trans’ a)

If trans’ introduces a new binder using lam, this introduction
will be unaware of the fact that n is in scope leading to
potential capturing. To avoid capturing, we would have to
use lam on the right-hand side to introduce a fresh variable x,
and substitute x for n in the body (assuming the existence of
a suitable substitution function subst):

trans (Lam n a) = lam (λx → trans’ (subst n x a))



data Exp = Var Name -- Variable
| Lam Name Exp -- Abstraction
| App Exp Exp -- Application
deriving (Show)

app :: Exp → Exp → Exp
app = App

lam :: (Exp → Exp) → Exp
lam f = Lam n body
where
body = f (Var n)
n = prime (maxBV body)

type Name = Integer

bot :: Name
prime :: Name → Name
(t ) :: Name → Name → Name

bot = 0
prime = succ
(t ) = max

maxBV :: Exp → Name
maxBV (Var _) = bot
maxBV (App f a) = maxBV f t maxBV a
maxBV (Lam n _) = n

Figure 4: Final solution

Although this version does avoid capturing, the whole ap-
proach is a bit fragile, and the need for renaming makes it
quite inefficient.

5. Conclusion

We have presented a simple solution to the problem of gen-
erating first-order syntax with binders from a higher-order
interface. The key is to use circular programming to be
able to examine the body of a binding “before” deciding
which name to bind. Despite its simplicity, our solution pos-
sesses characteristics that makes it quite suitable for practi-
cal EDSLs. In particular, our solution

• does not require a separate data type for higher-order
abstract syntax,

• is efficient and implementable in plain Haskell 98.

Our technique also serves as a real example where circu-
lar programming is used to change the complexity class of
an algorithm. Bird’s circular solution to the Repmin prob-
lem uses one traversal instead of two, possibly leading to a
smaller constant factor for the algorithmic complexity. In our
case, circular programming allows us to build an expression
in linear time instead of exponential.

The complete final solution is given in Fig. 4.
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